

Основы кардиостимуляции

Максим Голубин

Сервисный инженер

Подразделение кардиологических имплантируемых устройств и электрофизиологии

ООО «Эбботт Лэбораториз»

Что такое ЭКС?

Электрокардиостимулятор (ЭКС) – протез электрической проводящей системы сердца.

ЭКС состоит из микрокомпьютера, аккумулятора и корпуса.

<u>Система электрокардиостимуляции</u> состоит из кардиостимулятора, электродов и удалённого мониторинга.

Кардиостимулятор – программируемое устройство, основные параметры которого задает врач!

Развитие кардиостимуляции

```
1958 – первый имплантированный ЭКС
```

- **1962** синхронная стимуляция по Р-волне
- 1964 стимуляция по запросу
- 1969 AV последовательная стимуляция
- **1980** DDD стимуляция
- 1988 частотная адаптация
- **1995** технология AutoCapture^{тм}

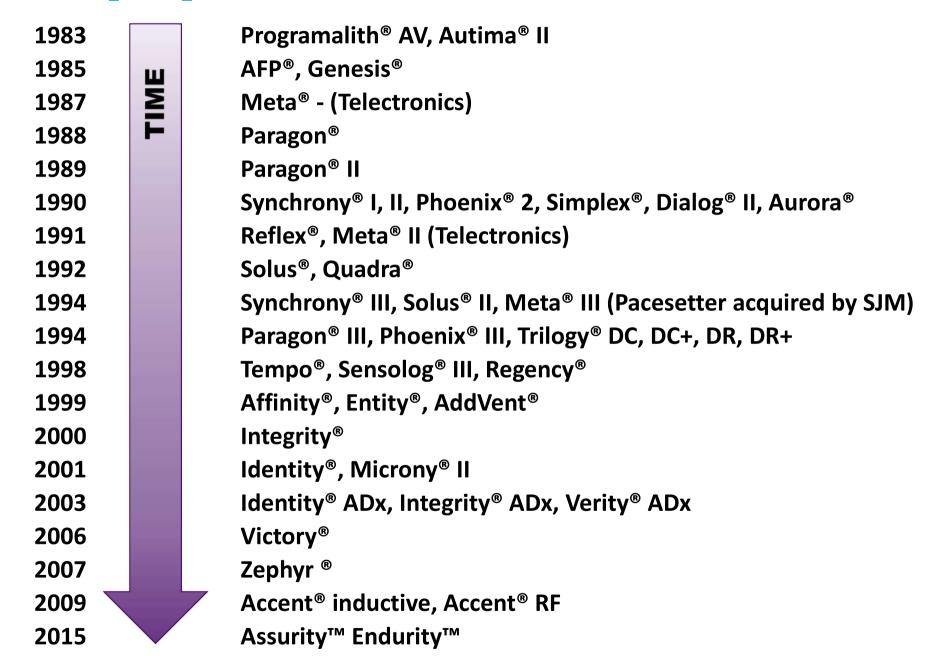
ЭКС способны выполнять всё больше и больше функций!

COBPEMEHHAЯ СИСТЕМА СКМ

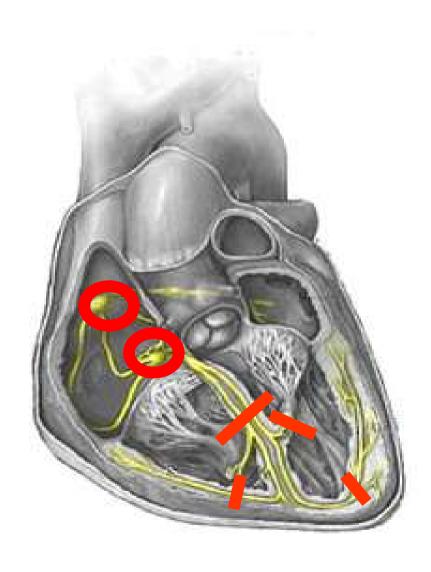
Имплантируемое устройство

Имплантируемые электроды

Интродьюсеры (системы доставки)



Программатор



Система удаленного мониторинга

История развития ЭКС St. Jude Medical (Abbott)

Основные показания для установки брадиустройств

Предсердные нарушения ритма Узловые AV нарушения ритма Нарушения ритма ниже AV-узла

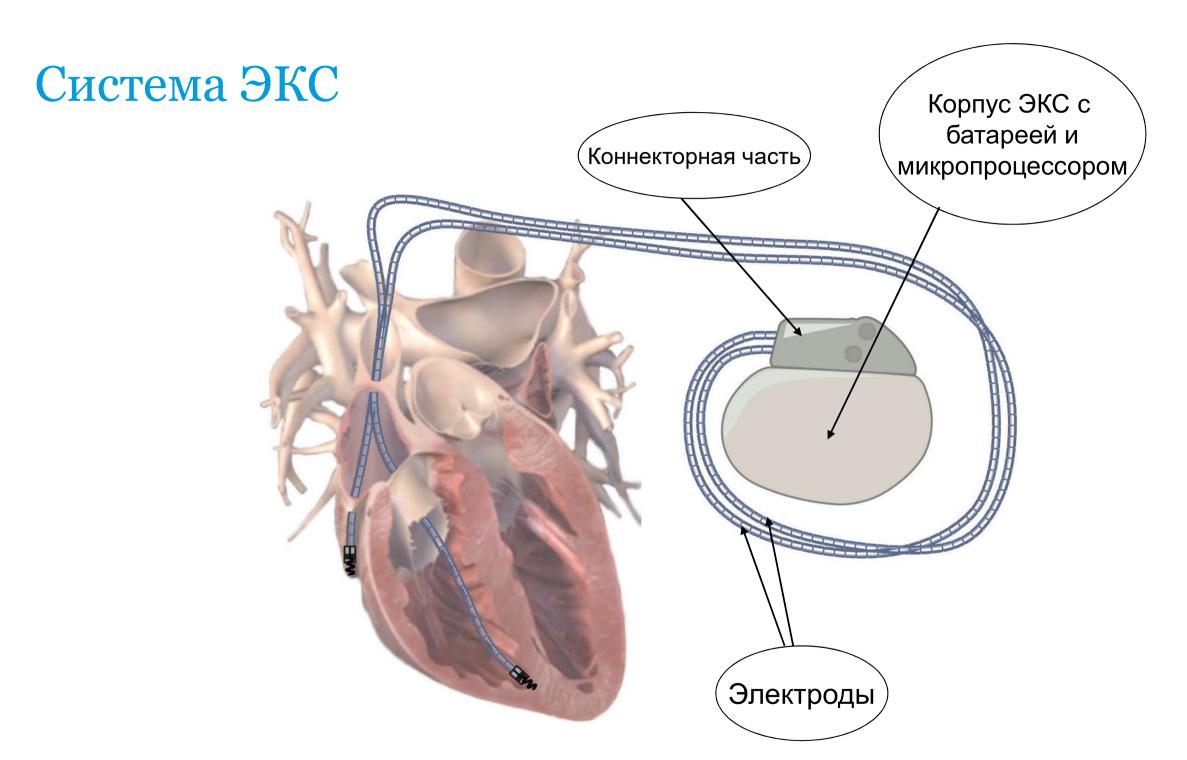
Имплантация


Наличие кардиохирургического отделения на случай осложнений!

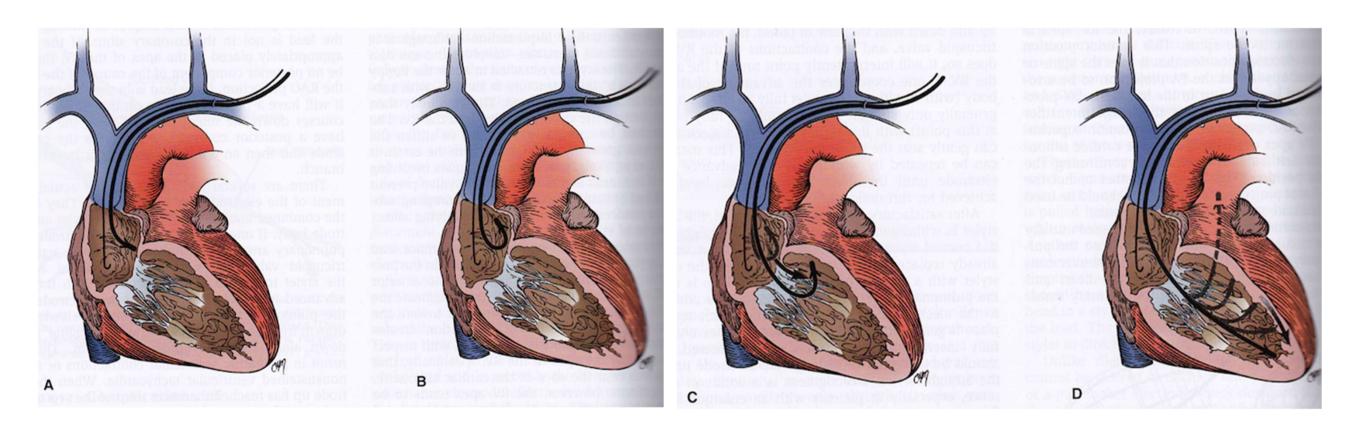
Имплантация ЭКС – малоинвазивная хирургическая процедура, требующая рентген-контроля.

Хирургическая операционная:

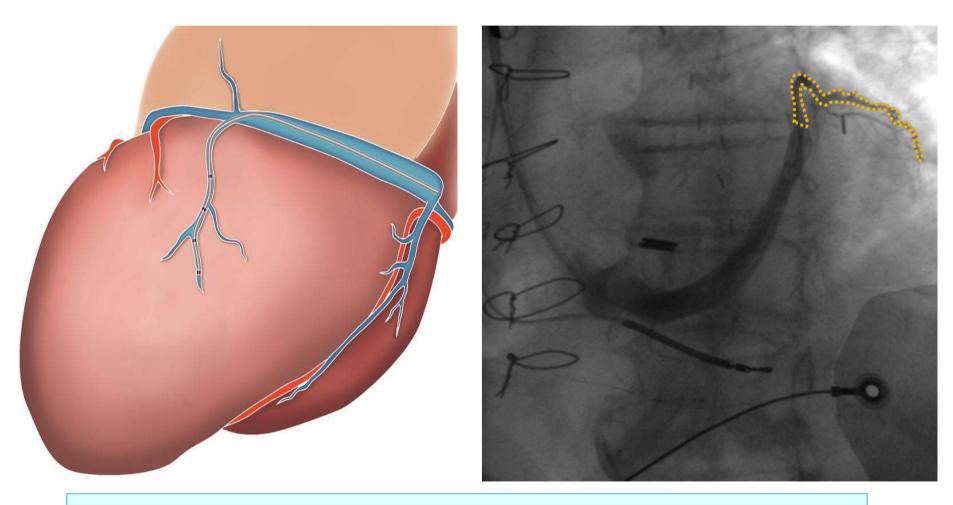
- Наличие С-дуги или ангиографа:
 - Возможность дефибрилляции и временной кардиостимуляции
 - Мониторинг ритма
 - Программатор



Гибридная операционная (OR) или комплексная ЭФ-лаборатория (CathLab)


Proprietary and confidential — do not distribute

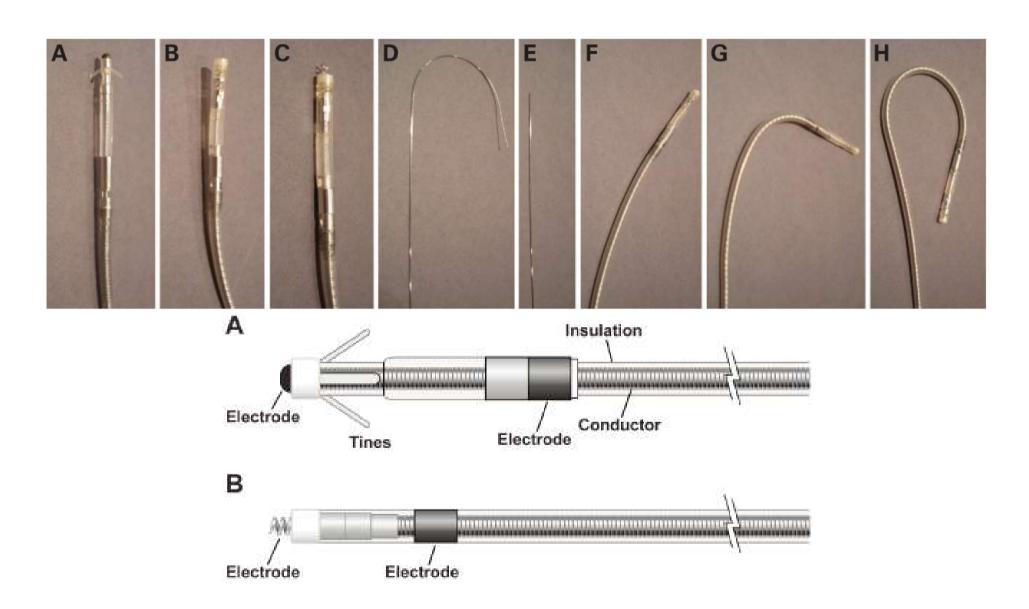
Имплантация


– предсердный электрод

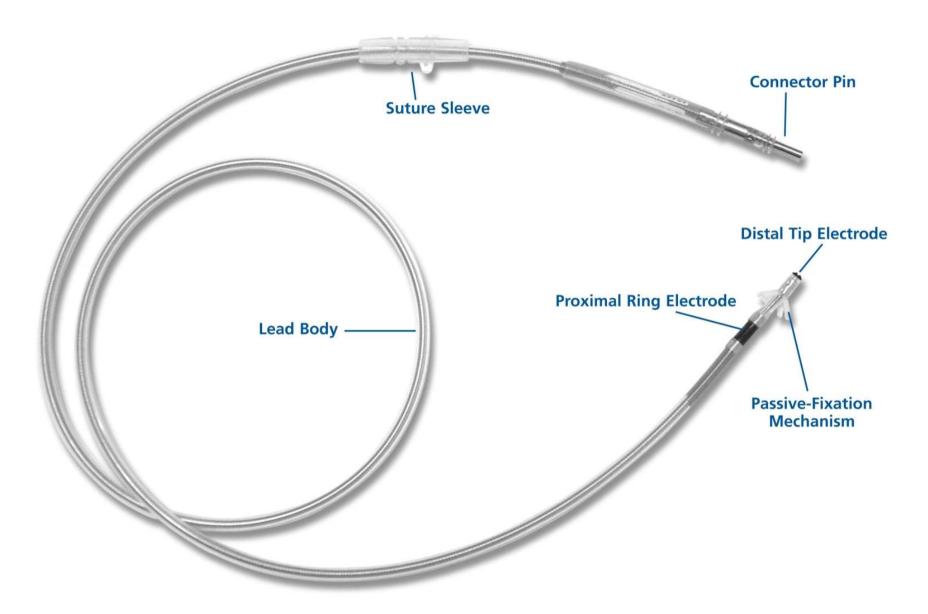
– желудочковый электрод

Анатомия коронарного синуса Имплантация ЛЖ электрода (CRT)

Имплантация ЛЖ электрода (CRT)


Электроды

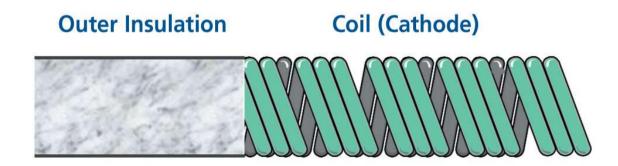
Электроды

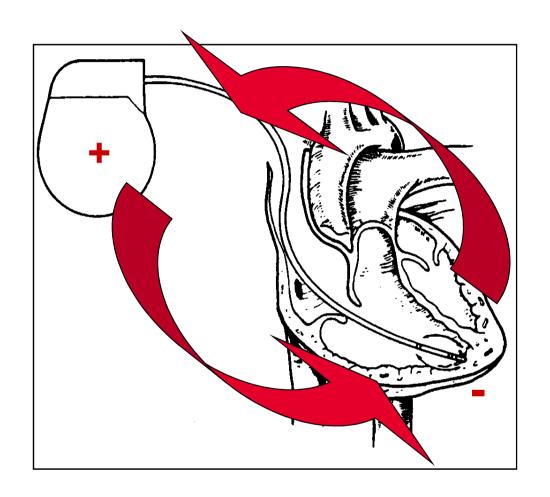

Доставляют электрические импульсы от генератора к сердцу Воспринимают импульсы сердечной деполяризации Характеризуются электроды, исходя из:

- Расположения
- Механизма фиксации
- Полярности
- Типа изоляции
- Формы

Электроды: пассивная и активная фиксация

Анатомия электрода для стимуляции

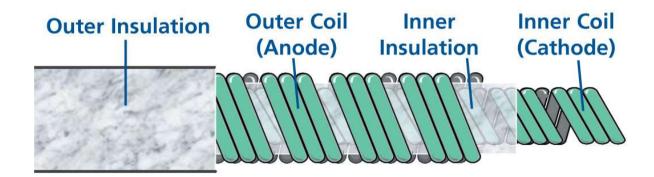


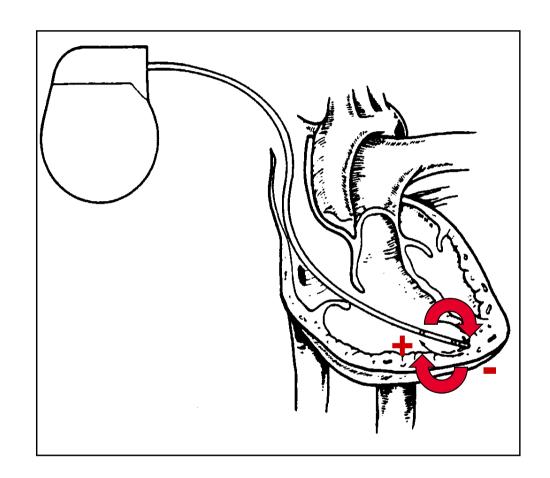

Униполярный

Один электрод на кончике

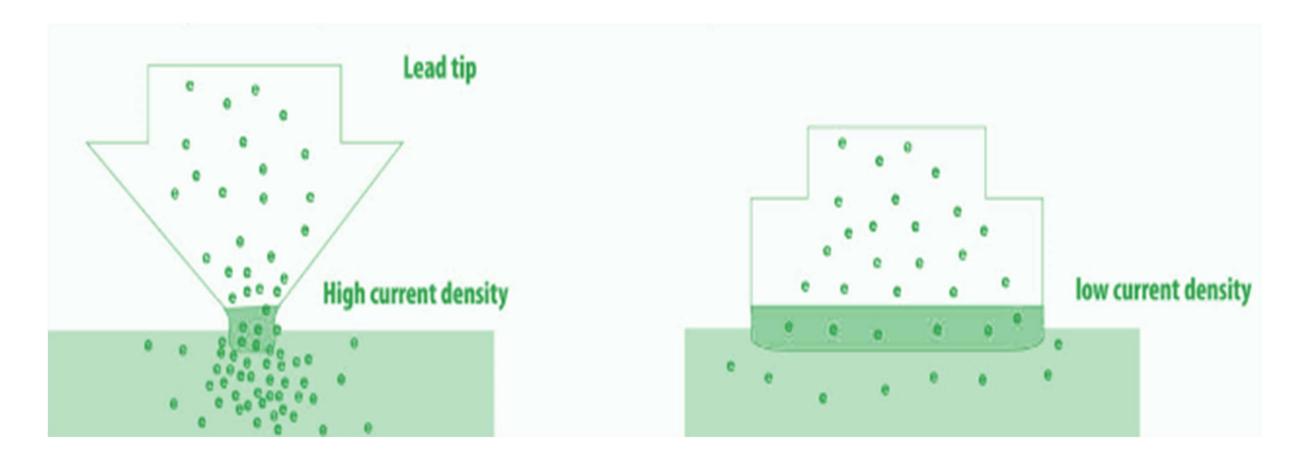
Одна проводящая катушка

Катушка может состоять из нескольких жил


Биполярный

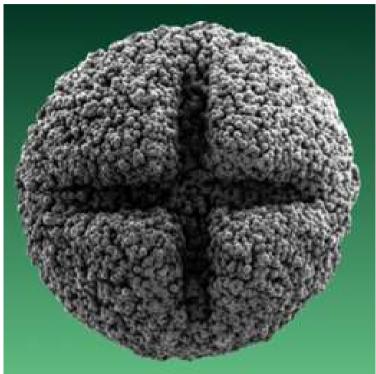

Цепь измерения – кончик и кольцо

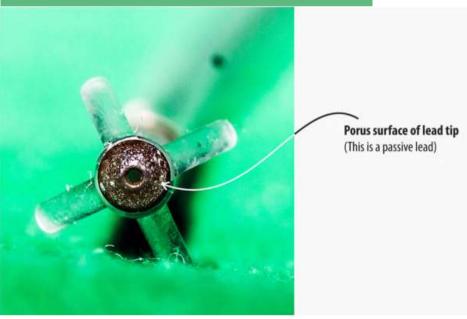
Две проводящие катушки (одна внутри другой)


Внутренний слой изоляции

Обычно немного толще униполярных электродов

Площадь поверхности электрода: плотность тока




Низкий порог захвата миокарда, но высокая поляризация и высокое сопротивление Высокий порог захвата миокарда, но низкая поляризация и низкое сопротивление

Борьба с высокой поляризацией

Покрытие нитридом титана (TiN)

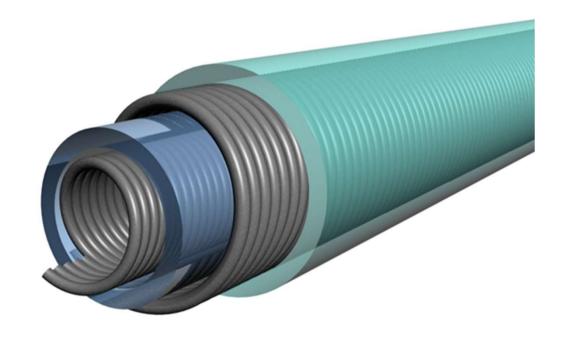
- Увеличивает площадь поверхности в 10,000 раз и улучшает чувствительность
- Меньший диаметр (Fr) электрода
- 94% меньшая поляризация
- Неровная поверхность способствует росту окружающих тканей
- Биосовместим используется в стоматологических имплантах
- Оба полюса чёрные

Изоляция электродов

Изоляция от компании Abbott (St. Jude Medical)

- Силиконовая (внутренняя и внешняя)
 - **-**30+ лет на рынке
 - Биостабильный и мягкий, но истирается со временем
- Полиуретан
 - -55D
 - -Твердый и прочный, но менее устойчив к биосредам
- Ко-полимер Optim
 - Гибрид силикона и полиуретана
 - Биостабильный, прочный и мягкий
 - НАДЕЖНЫЙ И ДОЛГОВЕЧНЫЙ!

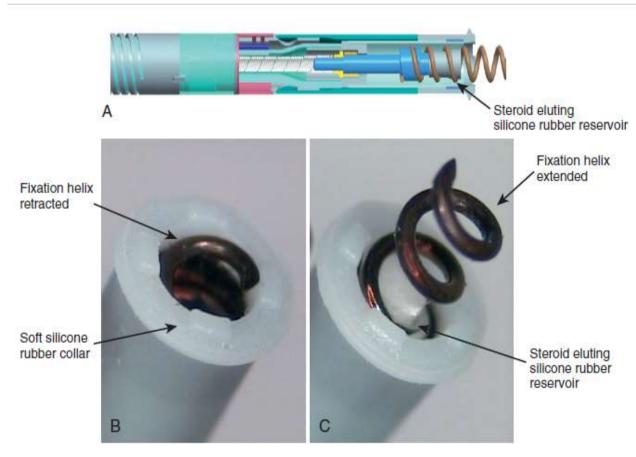
Изоляция: за и против


	Полиуретан	Силикон
Преимущества	Тоньше Устойчив к истиранию Более скользкий	Более мягкий Более гибкий Устойчив к изломам Устойчив к окислам
Недостатки	Подвержен излому (ESC) Отложения из-за окисления металлов (MIO) Более жесткий	Толще Легко истирается Липкий (сложнее завести 2 электрода)

ЭЛЕКТРОДЫ

▶ Изоляция Optim[™]

Ко-полимер силикона и полиуретана: преимущества без недостатков.


Изоляция Optim[™] с покрытием Fastpass – комбинация надежности, биостабильности, прочности, мягкости и лёгкости имплантации.

Электроды: активная и пассивная фиксация

Активная спираль – выдвигается/убирается

Позволяет размещать электрод в любом месте камеры сердца

Proprietary and confidential — do not distribute

Пассивная фиксация – «якорьки» Фиксирующие лепестки располагаются в трабекулах – фиброзной сети сердца

Эпикардиальные электроды

Электроды, располагаемые прямо на поверхности сердца

- Механизм фиксации:
 - Вкручивание в миокард желудочка
- Для установки требуется выполнение стернотомии или лапароскопии
- Биполярный (IS-1)
- Силиконовое покрытие
- Высокая чувствительность и низкая поляризация

Электрическая составляющая стимуляции

Цели кардиостимуляции

Зачем мы стимулируем?

- Необходимо доставить достаточно энергии, чтобы деполяризовать всю камеру сердца (захват);
- Необходимо правильно распознавать собственную активность миокарда (чувствительность)

На указанные параметры влияет множество факторов:

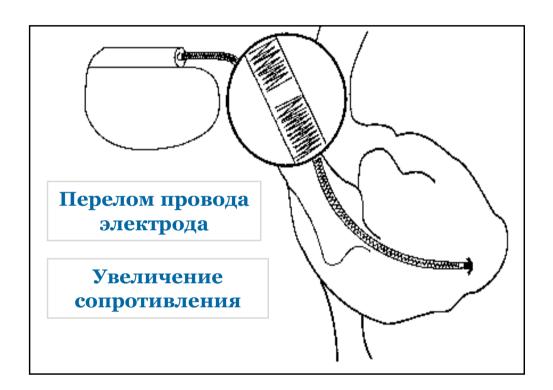
- Настройки выходного импульса (амплитуда, длительность)
- Настройки чувствительности
- Импеданс

Напряжение, ток, сопротивление

- Вода это напряжение (давление установлено на определенный неизменный уровень)
- Насадка это сопротивление (может быть уменьшена в размере, что вызовет ограничение потока)
- Поток воды через выходное отверстие это ток (где большое сопротивление там маленький ток)
- Если убрать насадку (уменьшить сопротивление), то поток увеличится (увеличится ток)

Импеданс

- Это сумма всех сил, которые противодействуют току в цепи
- Измеряется в Омах (Ω)
- Обычно сопротивление электрода для стимуляции лежит в интервале от 300 до 1500 Ом
- Следующие факторы могут влиять на значение импеданса:
 - Сопротивление катушек индуктивности;
 - Ткань между анодом и катодом;
 - Площадь поверхности электрода;
 - Размер и форма кончика электрода.


Высокий импеданс Перелом проводника электрода

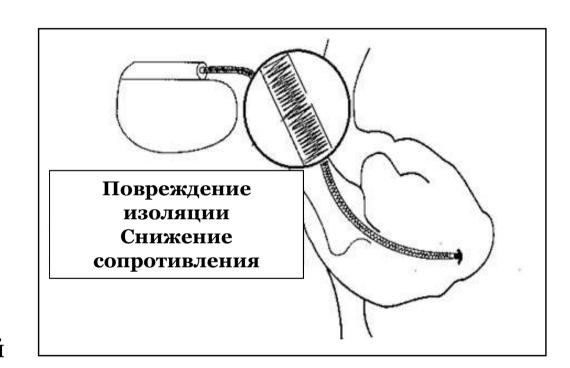
Перелом проводника может привести к повышению импеданса

• Ток от батареи может быть слишком низким для эффективной работы устройства

Значения импеданса могут превышать 3,000 Ω

Другая причина высокого импеданса - электрод не достаточно хорошо закреплен в кардиостимуляторе

Состояния низкого импеданса


повреждение изоляции проводника

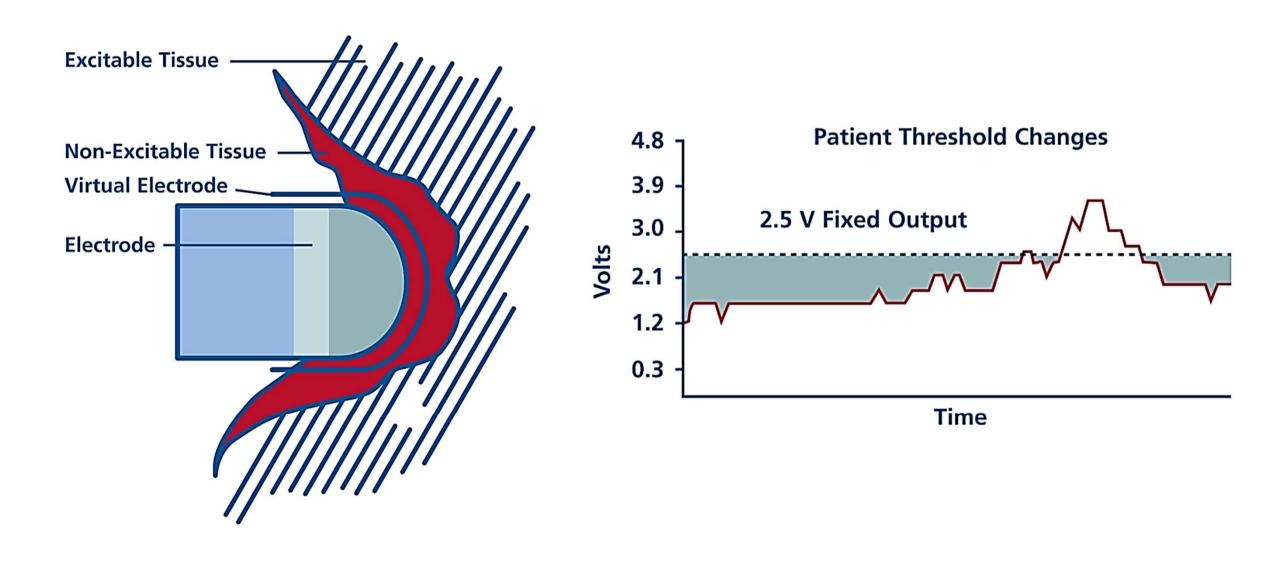
Нарушение изоляции приводит к воздействию на проводника электрода:

- Жидкостей организма, которые имеют низкое сопротивление, или
- Другого проводника электрода (при биполярном электроде)

Нарушение изоляции проводника приводит к следующему:

- Снижается импеданс
- Утечка тока через разрыв изоляции в ткань, или другой электрод
- Возможность потери захвата
- Ускорение разряда батареи

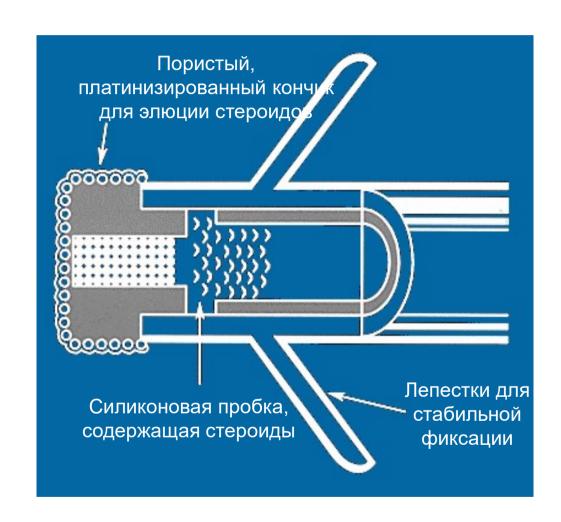
Выходные параметры

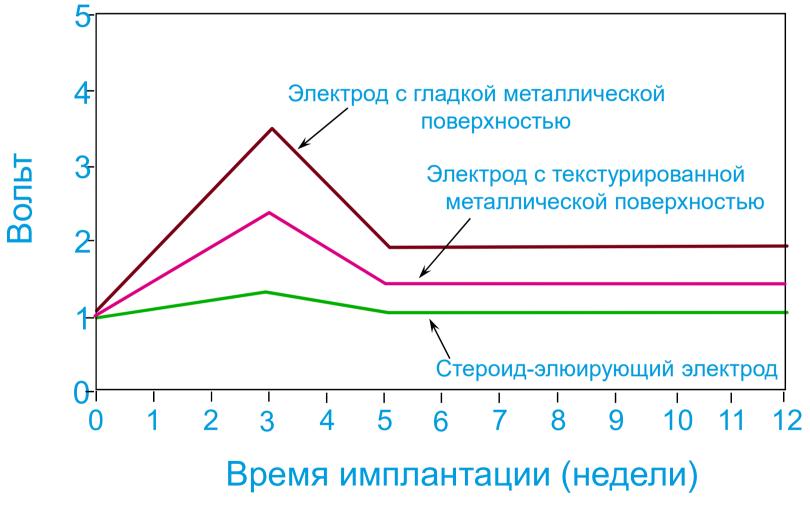


Начало импульса Конец импульса

Захват

- Если импульс ЭКС вызывает деполяризацию, это называется «захват»
- **Порог захвата** это минимальное количество энергии, необходимое для последовательной деполяризации миокарда;
- Порог захвата также называют порогом стимуляции
- Порог стимуляции не является постоянной величиной:
 - Может меняться с течением времени (заболевания, медикаменты, возраст);
 - Может даже меняться в течение дня


Острые и хронические пороги


Стероид-выделяющие электроды

Стероид-выделяющие электроды снижают воспалительный процесс

- Сопровождается лишь незначительным пиковым повышением порога или его отсутствием
- Электроды поддерживают низкий порог захвата у длительно имплантированных электродов

Эффекты стероидов на пороги стимуляции

Ширина импульса = 0,5 мсек

Ссылки: Pacing Reference Guide, Bakken Education Center, 1995, UC199601047aEN. Cardiac Pacing, 2nd Edition, Edited by Kenneth A. Ellenbogen. 1996.

Что влияет на порог захвата?

- Уровень активности
- Положение тела
- Время суток

- Сопутствующие заболевания
- Сердечная недостаточность

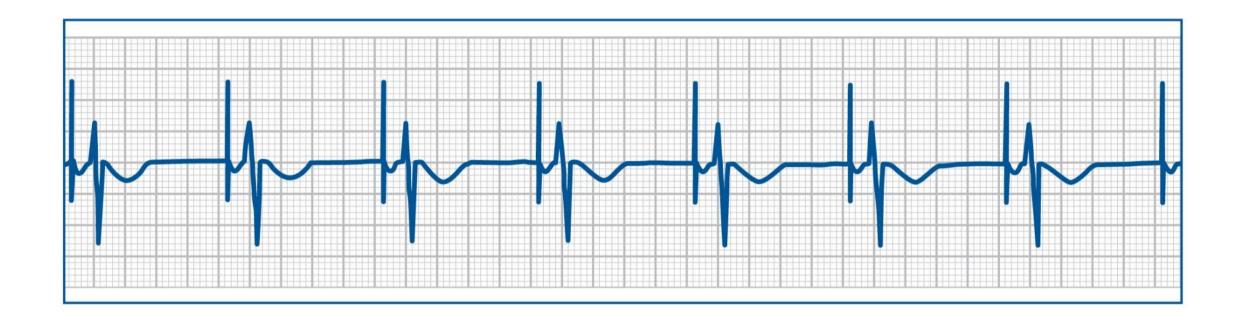
- Питание
- Медикаменты
- Прогрессирование заболевания

Коэффициент безопасности порогов

Программирование выходных параметров стимуляции (амплитуда и длительность импульса) всегда подразумевает под собой баланс:

- Уверенного захвата при изменяющихся порогах
- Сохранения батареи

Производители в свою очередь решают задачи:


- Уменьшения размера устройства (меньшие батареи)
- Увеличение срока службы, но с сохранением полной безопасности пациента

Коэффициент безопасности

- В ручном режиме: 2:1 или 3:1
- Технология AutoCapture^{тм} (есть только у Abbott)


Постоянный захват предсердий

- Деполяризация предсердия есть после каждого стимула
- Собственная R-волна идет следом за предсердным стимулом

Постоянный захват желудочков

• Широкие желудочковые комплексы

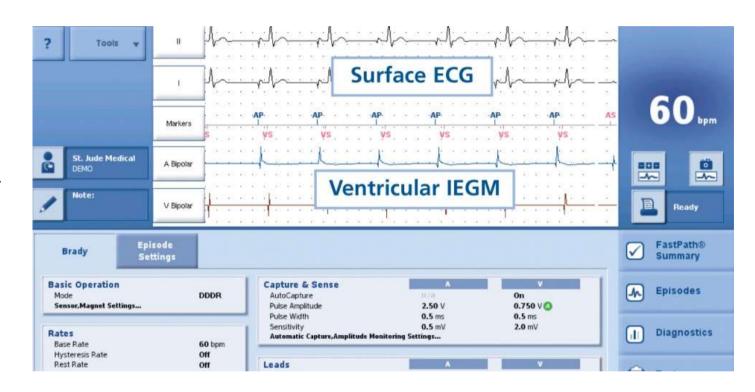
Распознавание собственных электрических сигналов сердца

Чувствительность

Чувствительность описывает, как ЭКС способен распознавать собственные электрические сигналы сердца

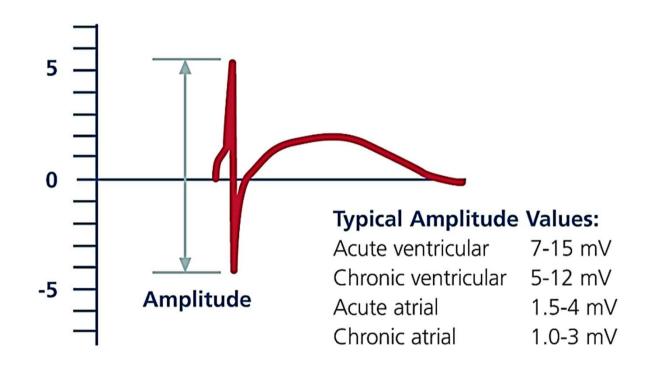
Важные моменты, которые нельзя упускать из виду, говоря о чувствительности:

- Поверхностная ЭКГ
- Внутрисердечные ЭГМ
- Порог чувствительности
- Усиление чувствительности
- Настройки чувствительности и коэффициент безопасности
- Униполярная/биполярная конфигурация
- 9MП


Поверхностная ЭКГ/внутрисердечная ЭГМ

Поверхностная ЭКГ:

графическое изображение электрических сигналов сердца, воспринимаемых электродами на поверхности тела пациента


Внутрисердечная ЭГМ:

графическое изображение электрических сигналов сердца, воспринимаемых электродами внутри сердца (стимулирующие электроды)

Внутрисердечные электрограммы

- Амплитуда это размах напряжения (высота Р или R волны) выраженная в милливольтах (мВ)
- Частота число повторений сигнала за определенный промежуток времени выраженная в герцах (Гц).
- Фильтры позволяют не выводить на экран сигналы с частотами, не относящимися к сердечной активности

Порог чувствительности

Порог чувствительности описывает минимальный предсердный или желудочковый сигнал (выраженный в мВ), который может быть считан и распознан кардиостимулятором

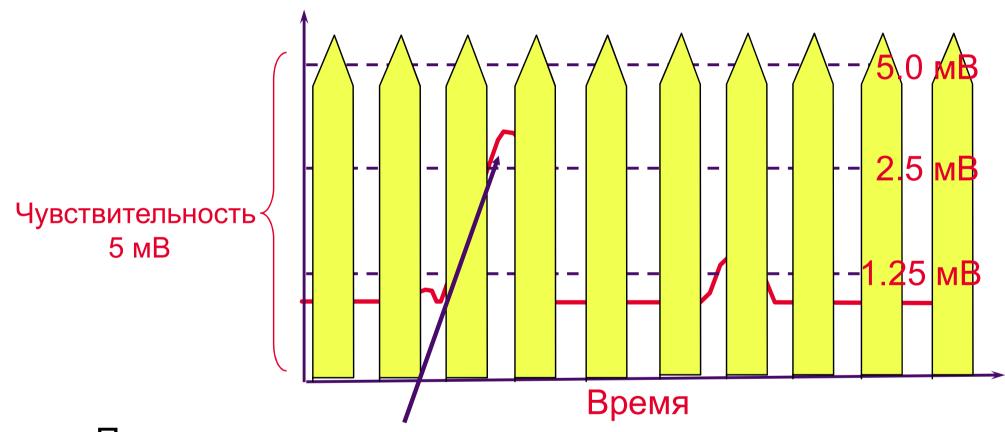
Чтобы оценить порог чувствительности, необходимо:

- Удостовериться, что ЭКС «видит» сигналы (может потребоваться временное программирование)
- Маленькими шагами необходимо постепенно уменьшать чувствительность (увеличивать значение в мВ) пока ЭКС не потеряет сигнал от сердца

Коэффициент безопасности чувствительности

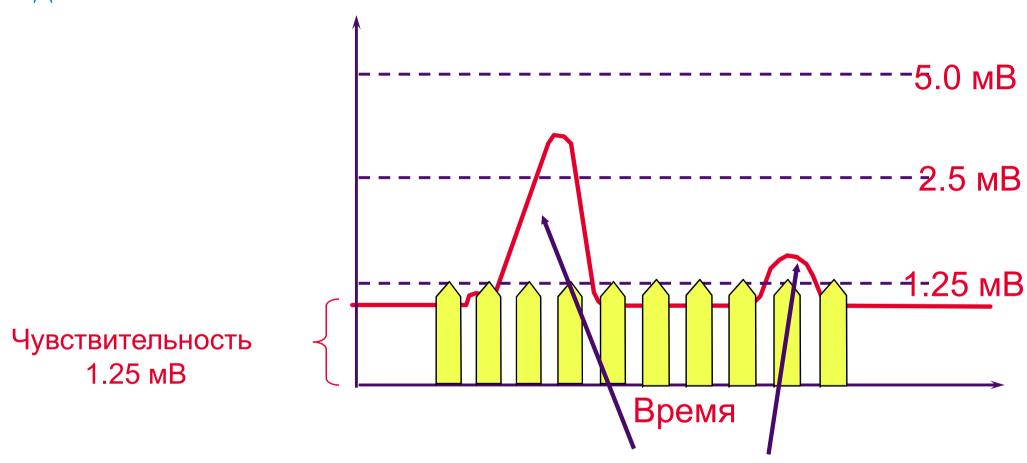
Коэффициент безопасности чувствительности обеспечивает надежное восприятие сигналов несмотря на изменения в порогах

Стандартный коэффициент безопасности чувствительности для всех ЭКС: значение чувствительности должно быть как минимум в 2 раза меньше минимального распознанного собственного сигнала


• Пример: наименьшая R волна 6.0 мВ, значит значение чувствительности по желудочковому каналу должно быть 3.0 мВ или меньше

Safety margin Sensitivity Setting

Чувствительность Значение, программируемое в ЭКС


Чувствительность Что увидит ЭКС?

При данном значении кардиостимулятор не увидит сигнал 3.0 мВ

Proprietary and confidential — do not distribute

Чувствительность Что увидит ЭКС?

При данном значении кардиостимулятор может видеть сигналы как 3.0 мВ, так и 1.25 мВ. Является ли "хорошая чувствительность" предпочтительной, ввиду того что кардиостимулятор видит слабые сигналы?

Усилители/фильтры чувствительности

Точная чувствительность требует фильтрации посторонних сигналов

- Так как все, что воспринимает кардиостимулятор по определению является волной Р или R
- Усилители чувствительности используют фильтры, которые позволяют правильно воспринимать Р и R волны, и отклонять лишние сигналы

Наиболее частыми нежелательными сигналами являются:

- Волны Т (которые кардиостимулятор определяет как волны R)
- Far-field события (R волны воспринимаются предсердным каналом, которые распознаются кардиостимулятором как Р волны)
- Миопотенциалы скелетных мышц (например, от грудной мышцы, которые кардиостимулятор может принять за P- или R волны)
- Сигналы от кардиостимулятора (например, предсердные стимуляции перекрестным образом воспринимаются желудочковым каналом)

Правильное распознавание предсердной активности

- Р волна ингибирует стимуляцию предсердия
- Стимулирование желудочка осуществляется после каждой Р волны

Правильное распознавание желудочковой активности

• R волна ингибирует стимуляцию желудочка

Воздействие электро-магнитного поля на ЭКС

Электро-магнитные помехи (ЭМП)

- ЭМП это электрические сигналы нефизиологического происхождения
- Может оказать воздействие на ЭКС (временное или постоянное)
- Типичные источники ЭМП:
 - Кардиоверсия/дефибрилляция
 - ЭХ-аппараты и коагуляторы
 - -MPT
 - Ударно-волновые литотрипторы
 - Терапевтическая радиация
 - РЧА

Кардиоверсия/дефибрилляция

- Может нанести повреждения генератору импульсов
- Может временно ингибировать или перепрограммировать ЭКС
 - Режим страхующей стимуляции или ответ на шум
- Термические повреждения миокарда как вторичные последствия шока могут вызвать ФЖ, ОИМ или и то и другое
- Рекомендации
 - Оценить потенциальное влияние на аппарат
 - Расположить пластины на расстоянии не менее 10-15 см от ЭКС
 - При возможности расположить пластины спереди и сзади пациента (anterior/posterior)

Литотрипсия

ВИБРАЦИИ, СОЗДАВАЕМЫЕ ЛИТОТРИПТОРОМ, МОГУТ ПОВРЕДИТЬ ЭКС (ОСОБЕННО ЭКС С АКСЕЛЕРОМЕТРОМ, Т.Е. ЧАСТОТНО-АДАПТИВНЫЕ)

РЕКОМЕНДАЦИИ:

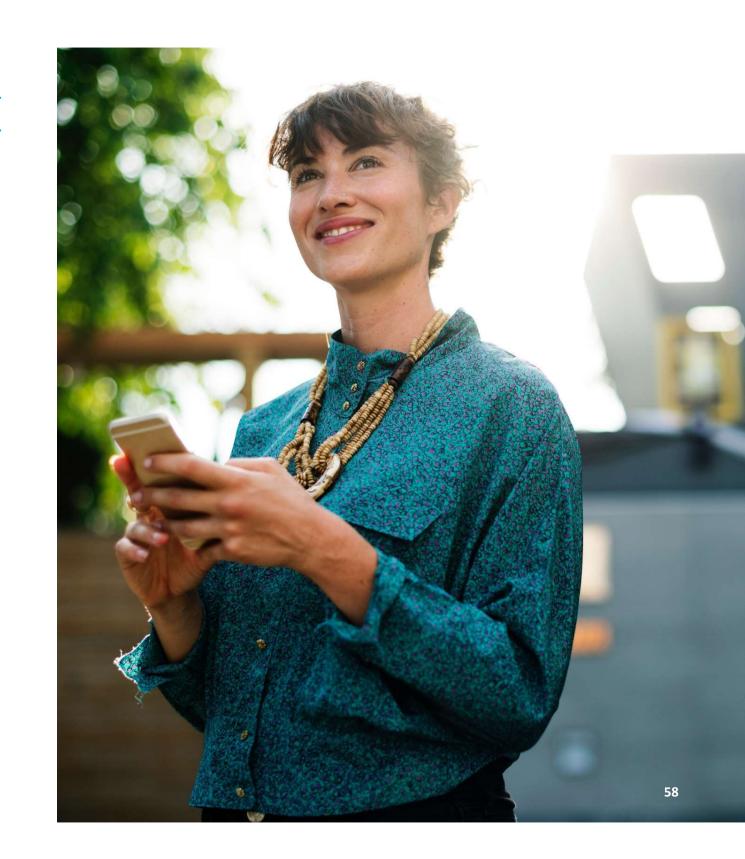
- Перевести ЭКС в режим VVI или VOO
- Источник излучения литотриптора держать на расстоянии не менее 15 см от ЭКС
- Следить за сердечным ритмом во время процедуры

Терапевтическая радиация

- Повреждения зависят от дозы
- Повреждения имеют свойство накапливаться; необходимо следить за устройством на протяжении всего курса радиотерапии
- Транзисторы могут выйти из строя
- ЭКС может выйти из строя, но вид повреждения предсказать невозможно
- Рекомендации
 - Терапевтическая ионизирующая радиация строго противопоказана
 - Если терапевтическая радиация все же используется, ЭКС должен быть дополнительно защищён или перенесён в менее уязвимое место

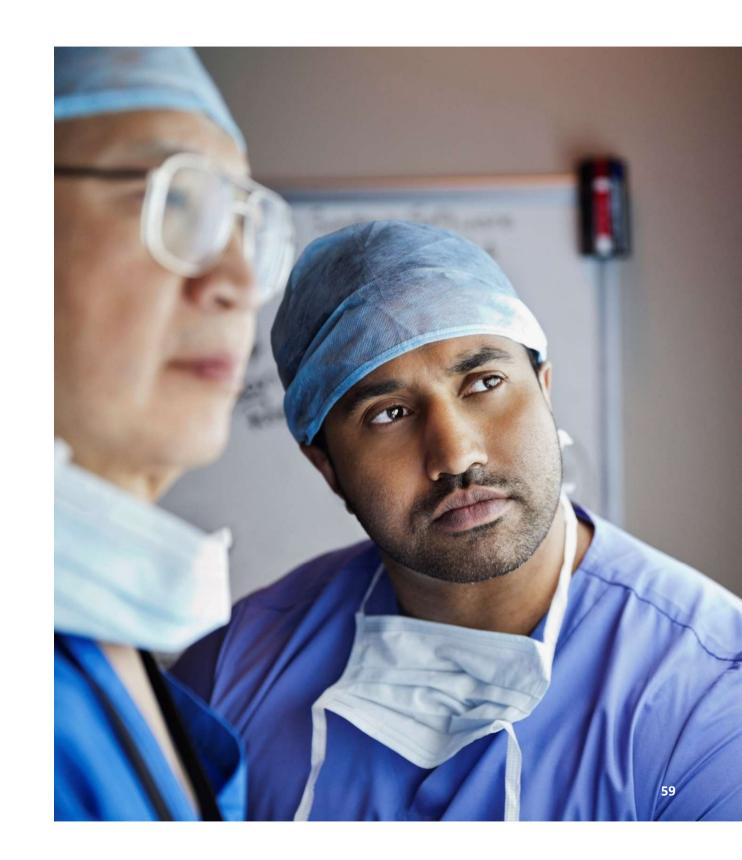
Радиочастотная аблация (РЧА)

РЧА МОЖЕТ ВРЕМЕННО ИЛИ НАДОЛГО ПЕРЕПРОГРАММИРОВАТЬ ЭКС

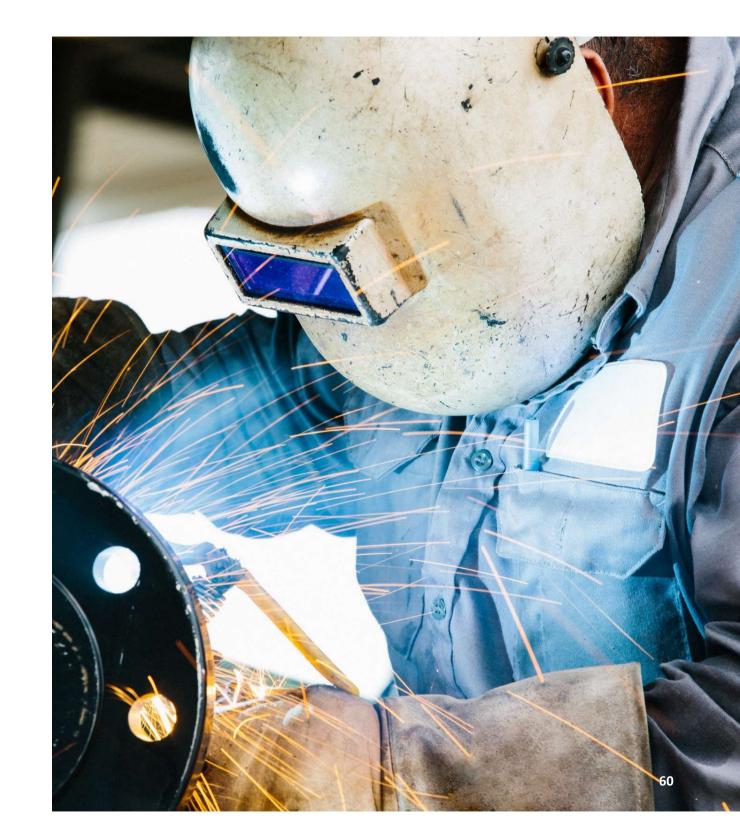

РЕКОМЕНДАЦИИ:

- Периодически считывать состояние ЭКС и его режим работы по ходу процедуры
- Перепрограммировать при необходимости

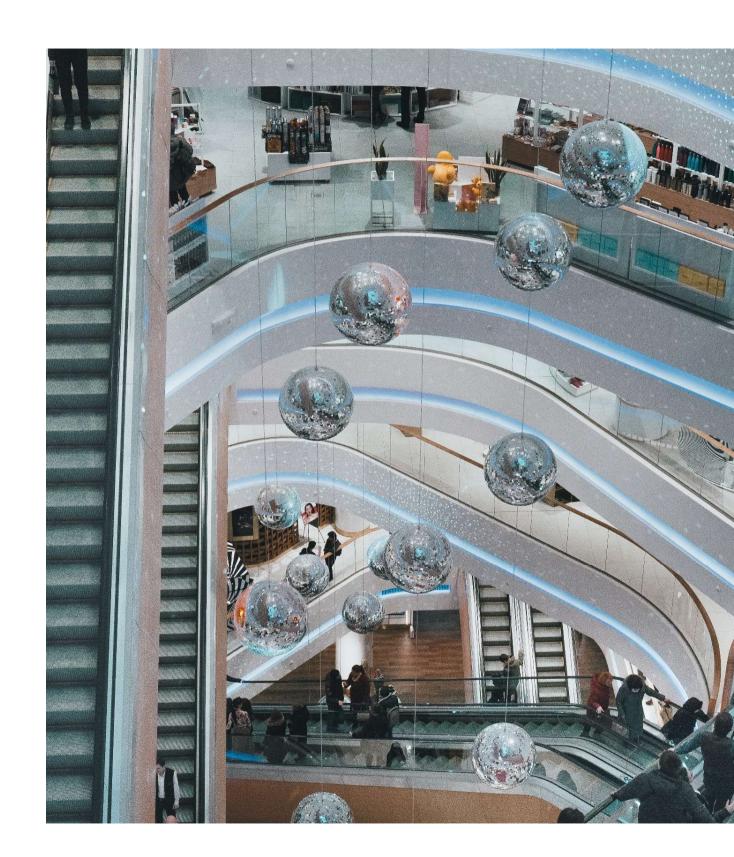
Другие источники ЭМП


Мобильные телефоны

- Антенна телефона не должна быть направлена в сторону ЭКС
- Разговаривать лучше с другой стороны от имплантированного устройства
- Не носите включенный телефон рядом с ЭКС/ИКД
- Может вызвать ненужное ингибирование, асинхронный режим, режим страхующей стимуляции, ненужную частотную адаптацию


Источники ЭМП в медицине

- Электрокоагуляторы
- Дефибрилляторы
- Аппараты диатермии
- MPT
- Стимуляторы нервов и мышц
- Стоматологическое оборудование
- Диагностический УЗ
- Низкочастотная акупунктура
- литотрипторы


Источники ЭМП в промышленности

- Сварочные аппараты
- ЛЭП
- трансформаторы
- Радио и ТВ передатчики
- Статический заряд
- Большие металлические рамки в магнитном поле
- Индукционные нагреватели
- Электрические коммутаторы

Источники ЭМП в общественных местах

- РЧ передатчики
- Антенны телекоммуникации
- Металлодетекторы в аэропортах
- Детекторы против краж в магазинах
 - Могут быть не обозначены
- Сотовые телефоны

Влияние ЭМП

Защита внутри ЭКС

- Специальные дополнительные микросхемы (для защиты от потери данных или ошибок ПО)
- экранирование

Эффекты

- Ингибирование: интервал между импульсами увеличивается вплоть до того, что ЭКС не стимулирует, а должен.
- Реакция на шум: изменение режима (обычно на асинхронную стимуляцию), что может потребовать перепрограммирование.
- **Восприятие шума:** увеличение частоты стимуляции, поскольку ЭКС старается проводить на желудочки ЭМП (думая, что это предсердная активность)

Proprietary and confidential — do not distribute

Ответ на магнит

- Прикладывание магнита к ЭКС Abbott вызовет изменение частоты стимуляции до фиксированного значения
 - однокамерный = режим VOO (или AOO)
 - двухкамерный = режим DOO
- Частоты стимуляции зависит от напряжения батареи
 - Обычно от 100 до 85 уд/мин
- Положите магнит поверх устройства на весь период времени, когда нужна асинхронная стимуляция

Поддерживающая стимуляция (Back up mode)

Parameter	Setting
Mode	VVI
Base Rate	67 min ⁻¹
RV Pulse Configuration	Unipolar Tip
LV Pulse Configuration ²¹³	Unipolar Tip
Sense Configuration	Unipolar Tip
Pulse Amplitude	5.0 V
Pulse Width	0.6 ms
V Pace Refractory Period ²¹⁴	321.5 ms
Sensitivity	2.0 mV (fixed)
Ventricular Pacing ²¹⁵	LV -> RV
Interventricular Delay ²¹⁶	16 ms

Proprietary and confidential — do not distribute

МРТ-совместимые системы

Терминология МРТ-безопасности

MPT безопасный (MR Safe)

- Имплант полностью состоит из немагнитных, не проводящих электричество и не реагирующих на РЧ материалов, исключающий все основные угрозы во время МРТ-исследования.
 - Имплант сделан из пластика, силикона (грудные имплантаты) или стекла.

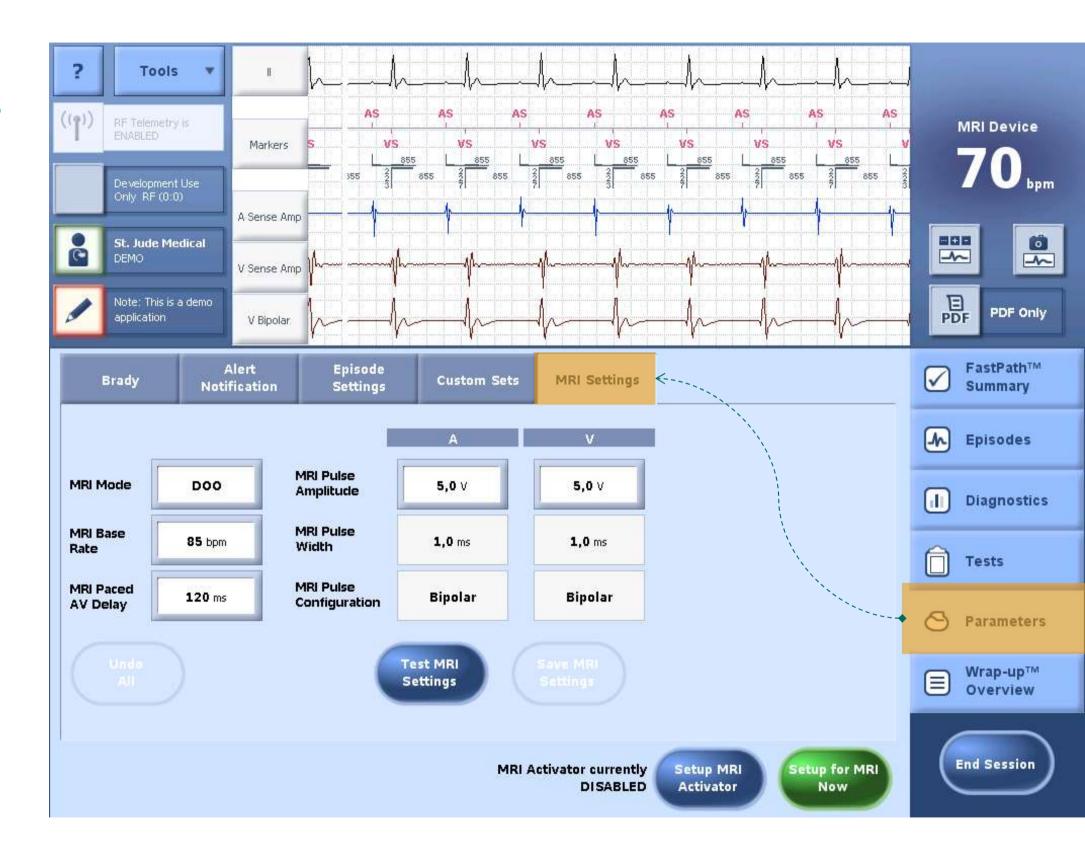
MPT небезопасный (MR Unsafe)

- Данная категория зарезервирована для объектов, которые ферримагнитны и представляют прямую угрозу людям и оборудованию, находящимся в магнитной комнате.
 - -Стойки для капельниц (intravenous poles)
 - -Клипсы внутричерепных аневризм

Условно-совместимый с MPT (MR Conditional)

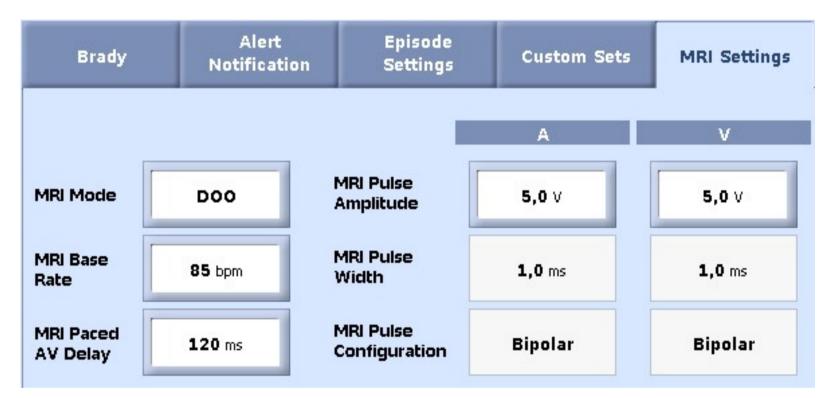
• Устройство или имплант может содержать магнитные, электропроводящие или РЧ-восприимчивые материалы, которые безопасны для проведения МРТ-исследования, при условии соблюдения параметров безопасной работы.

Приемлемые параметры МРТ-сканера


Variable	Condition
MRI Scanner Type	Horizontal Closed Bore
Magnet Strength	1.5T/64 MHz excitation frequency (hydrogen atom)
Spatial Gradient	< 30 T/m
Head SAR	< 3.2 W/kg
Whole Body SAR	Depends on lead model and length
Gradient Slew Rate	< 200 T/m/s
Scan Time Limitation	 Accent MRI™ pacemaker/Assurity MRI™ pacemaker/Endurity MRI™ pacemaker combined with Tendril MRI™ lead: No scan time limitations Other combinations: The cumulative capture time per MRI examination must not exceed 30 minutes. Another MRI examination must only be started 30 minutes after the end of the original examination.
Scan Zone Restrictions	Apply for certain device combinations and for certain MR pacing modes, for details see tables below

Implanted Device	Implanted Lead (model & length)		Scan Conditions SAR and Exclusion Zone
Assurity MRI™ Pacemaker PM1272, PM2272 Endurity MRI™ Pacemaker PM1172, PM2172	Tendril MRI™ Lead LPA1200M	46, 52, 58	< 4 W/kg (First-level Controlled operating mode) Full Body MRI
	1944	46, 52	A STAT /In-
		52, 58	< 2W/kg (Normal operating mode)
	Tendril™ STS Pacing Lead 2088TC	46, 52, 58	Full Body MRI
Endurity [™] Pacemaker PM1162, PM2162 Endurity [™] Core Pacemaker PM1140, PM2140 PM1152, PM2152	Tendril MRI™ Lead LPA1200M	46, 52, 58	A OVAZ /Ivo
	Isoflex [™] Optim [™] Pacing Lead 1944	46, 52	< 2W/kg (Normal operating mode)
	1948	52, 58	Full Body MRI
	Tendril™ STS Pacing Lead 2088TC	46, 52, 58	

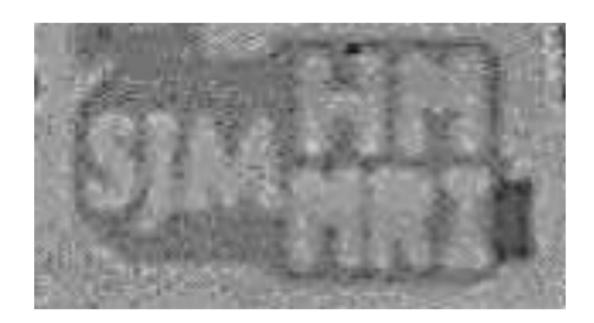
Актуальная информация об MPT-совместимых системах Abbott


mri.merlin.net


MRI Settings

ЭКС: номинальные параметры стимуляции в МРТ-режиме

Parameter	Setting
MRI Mode (dual-chamber devices)	DOO
MRI Mode (single-chamber devices)	VOO
MRI Base Rate	85 min ⁻¹
MRI Paced AV Delay	120 ms
MRI Pulse Amplitude	5.0 V
MRI Pulse Width	1.0 ms
MRI Pulse Configuration	Bipolar



Метки МРТ-совместимых систем

X-Ray ID Tag

Non-MRI MRI

MAGNASAFE

Determining the Risks of MRI at 1.5 Tesla for Patients with Pacemakers and Implantable Cardioverter Defibrillators (The MagnaSafe Registry)

Objective: The MagnaSafe Registry is a multicenter study designed to determine the risk of MRI at 1.5T in 1500 patients with pacemakers (PM) and implantable cardioverter-defibrillators (ICD) who undergo clinically-indicated non-thoracic imaging.

Methods: Device interrogation was performed pre- and post-MRI using a standardized protocol. Pacemaker non-dependent patients had pacing functions deactivated; dependent patients had the device programmed to an asynchronous pacing mode. Tachyarrhythmia therapies were disabled in non-pacemakerdependent ICD patients; dependent ICD patients were excluded. Primary endpoints were death, generator/lead failure, induced arrhythmia, or loss of capture at the time of the MRI. Secondary endpoints were clinically-relevant device parameter changes.

MAGNASAFE

Results: Between April 2009 and May 2013, 1189 non-thoracic MRI studies were performed (881 pacemakers, 308 ICD, 2293 leads) at 19 clinical sites. Pacemaker dependence was noted in 20% of cases; and MRI scan duration was 44 ± 20 min. No deaths, generator/lead failures, losses of capture, or ventricular arrhythmias occurred during the scan.

Six episodes of self-terminating atrial fibrillation (all within 48 hr) and 5 cases of partial electrical reset were noted.

Overall, one or more clinically-relevant device parameter changes occurred in 11% of PM and 26% of ICD cases.

Conclusions: Preliminary results for the first 1189 cases enrolled in the MagnaSafe Registry demonstrate no deaths, device failures, generator/lead replacements, ventricular arrhythmias, or losses of capture during non-thoracic MRI at 1.5T.

подводя итоги

Электрокардиостимулятор – протез собственной проводящей системы сердца

✓ однокамерный/двухкамерный

Система кардиостимуляции = ЭКС + электрод + удалённый мониторинг Электроды

- ✓ эндокардиальный
 - ✓ пассивной/активной фиксации
- ✓ эпикардиальный
- ✓ Сопротивление 300-1500 Ом
- ✓ Специальная изоляция

Импульс стимуляции

- ✓ Амплитуда [В], длительность [мс]
- ✓ Пороги захвата и чувствительности

Униполярный и биполярный режим стимуляции/измерения сигнала МРТ-совместимость

Спасибо за внимание!

Остались вопросы?

Максим Голубин: +7 915 272 19 98 maxim.golubin@abbott.com

